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Explicit formulas are established for simply generating arbitrarily large basis 
sets of optimal even-tempered Gaussian primitives which systematically 
approach complete bases for the entire function space. These bases, moreover, 
reproduce the corresponding optimal atomic SCF wavefunctions extremely 
closely and permit an extrapolation of the SCF energies to the Hartree-Fock 
limit. On the basis of the detailed quantitative information available from these 
calculations a simple general procedure is formulated for generating optimal 
even-tempered basis sets for molecular calculations. 
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1. Introduction 

If  optimal performance is to be achieved with Gaussian basis sets, which are 
necessarily restricted in size due to computational limitations, then a good under- 
standing of the relationship between such sets and complete bases is needed in order 
to gain an accurate assessment of convergence rates for the expectation values 
derived from variational calculations. About 15 years ago Schwartz [1 ] wrote, "The  
first essential in talking of  convergence rates is to have an orderly plan of procedure. 
That is, one must choose a set of basis functions to be used and then gradually add 
more and more of these terms to the variational calculation in some systematic 
manner." 
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** Present address : Chemistry Department, University of Washington, Seattle, Washington. 
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The even-tempered bases introduced by Ruedenberg et al. [2] are ideally suited for 
this purpose. Even-tempered (ET) Gaussian primitives are defined in terms of two 
optimizable parameters per symmetry by 

x(klm) = N(~k) exp (-~zr2)rZS?(O, ~), k = 1, 2 , . . . ,  ( la) 

~z = ~z,/3~. ( lb)  

While the restriction of the orbital exponents to a geometric sequence entails a small 
loss in variational freedom when compared to an independently optimized set, this 
loss must be seen in perspective. For  example, the first row elements might require 
an additional s-type primitive or two to obtain groundstate energies within a few 
millihartrees of  Huzinaga's [3] completely optimized exponent set for an (8s, 4p) 
basis, but the difference between the best energy obtainable with this set and the 
infinite basis set limit is several times larger. Table 1 shows the actual SCF energies 
for the (8s, 4p) ET and independently optimized atomic basis sets on carbon. All 
energies in this table and in the remainder of  the paper are in atomic units 
(1 a.u. = 1 hartree = 627.5 Kcal/mole). 

For this particular basis the ET choice of  exponents has resulted in a 3/1 reduction 
in the number of  nonlinear parameters, the independent exponents, which have to 
be varied in the optimization procedure. In larger basis sets the savings are even 
greater. 

I t  is the object of  this investigation to show that even-tempered Gaussian basis sets 
indeed furnish effective vehicles for systematically approaching complete basis sets. 
We begin by demonstrating quantitative relationships between even-tempered 
expansions and certain integral transform representations of  exact Har t ree-Fock 
atomic orbitals. Next, we establish a simple procedure for constructing appropriate 
sequences of  even-tempered orbital sets of  increasing size for several illustrative 
atoms and use them to systematically approach atomic Hartree-Fock limits. On 
the basis of  this information we finally develop a simple general method for 
constructing atomic orbital basis sets, called ETGSCFD-type,  that are effective for 
molecular calculations. 

Table 1. SCF energies for the carbon atom with ET and 
independently optimized Gaussian bases 

Basis Energy AE~ �9 AEH b 

Huzinaga (8s, 4p) -37.6798 0.0088 0.0 
ET (8s, 4p) -37.6681 0.0205 0.0117 
ET (9s, 4p) -37.6768 0.0118 0.0030 
ET (23s, lip) -37.6886 0.0000 -0.0088 

- AE~ is the difference between the energy for this basis and the 
HF limit energy. 

b AEH is the difference between the energy of this basis and the 
Huzinaga (8s, 4p) basis result. 
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2. Even-Tempered Gaussian and Exponential Expansions and Gaussian Integral 
Transforms for Atomic Orbitals 

In order to elucidate the relationship between exact HF-AO's and their approxima- 
tions in terms of even-tempered Gaussian AO's, we note that any atomic orbital of 
symmetry (l, m) can be expressed through an integral transform over Gaussian 
radial functions in the following manner 

fo ~zm(r, O, ~) = S?(O, ~)r z d~ e-~r2fl([), (2) 

where S~(O, ~) is a normalized spherical harmonic. In the present context it is 
convenient to write this representation in the form 

~m(r, O, ~) = d(ln ~)gzm(~; r, O, ~)al(~), (3) 
oo 

where 

g~m(~; r, O, 4) = N~ e-~r2r~Sp(O, ~), (4a) 

with 

l'~V V12~1/~ (4b) Nz = {~2~+a2~+Tfir[(2/+ ~ , . . , ,  , 

is a normalized Gaussian-type primitive AO. If  we consider for '~m exponential-type 
normalized AO's of the form 

X(~:; r, O, ~) = Mz e-r ~), (5a) 

with 

M~ = {(2f) 2~+3/(2l + 2)!}1~z, (5b) 

then the transform function at in Eq. (3) becomes 

a~(~, ~) = [2 ~+ 1/(l + 1)! ~r + 5>I4 e-(r (6) 

This is a generalization of a formula given by Kikuchi [4] for simple exponentials. 
Bishop and Somorjai [5] as well as Taylor [6] have also examined transforms of 
radial functions. 

It has been shown by Raffenetti [7] that any HF SCF AO can be efficiently expanded 
in terms of even-tempered exponential-type AO's of the form (5a), 

Ck,r~ = ~ b~x~m(r ~:~ = ~/~. (7) 

Combining such an expansion with the integral transforms for X~, we find for ~m 
the transform function 

b a ~xte a~,~(~) = .~ ~ ~ tg~., [), (8) 

where a~ x is given by Eq. (6). Examples of such HF AO transforms are shown in 
Figs. la- lc .  Fig. la corresponds to the (ls) orbital, Fig. lb to the (2s) orbital and 
Fig. lc to the (2p) orbital of the HF wavefunction of the carbon groundstate. The 
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values for the by and ~tv are taken from Raffenetti's (6s, 4p) even-tempered expo- 
nential expansion. Since this is an extremely accurate wavefunction (triple zeta in s 
and double zeta in p) the curves in these three figures can be considered as very close 
to the Gaussian transforms of the exact carbon HF SCF orbitals. 

Approximation of the integral transform (3) by means of a numerical integration 
implies replacement of the integral by a sum over a number of grid points ~ 
(k = 1, 2, 3 . . . ) .  Since it is apparent that the intervals (~+~ - ~k) should increase 
as ~k becomes larger and larger, one reasonable choice of gridpoints is given by the 
even-tempered exponents introduced in Eq. (lb), namely ~k = a,fl~. This choice 
leads to a set of equidistant gridpoints when In (g) is chosen as the integration 
variable, as has been implied in Eq. (3). Since the distance between neighboring 
gridpoints (ln ~k) is In (/3t), the even-tempered grid approximation to the integral 
transform (3) thus becomes 

r ,~ ~ glm(~)az(~k) In fit. (9) 
/r 

This type of approximation for HF AO's in terms of grin can be compared to those 
expansions that result from direct HF SCF calculations based on expansions of the 
SCF AO's in terms of even-tempered Gaussian primitives AO's, viz. 

~z,~ = ~ gt~(~k)c~, ~ = attiC, (10) 
Ir 

where e~ as well as the al and fl~ are variationally determined. In view of Eqs. (8), 
(9), and (10) one would expect relations like 

t e X  c~ x a(~t/3~) In/3, z In/3t ~ b~at (~, ~ = ~t/3~), (11) 
y 

in which b~, ~:~ come from HF calculations in terms of exponentials, whereas c~, az, 
fit come from HF calculations in terms of Gaussians. The a~* are given by Eq. (6). 

As a first example we consider the hydrogen (Is) function (~:3/~r)~I2 e-~r. In this case 
Eq. (11) simplifies to 

c~ ~ (8/~') 1/4 In/3(4afi~) -~I4 e -l14'~B~ (12) 

If  the ck, ~, 13 are determined from a six-term even-tempered Gaussian expansion 
(corresponding to an error in the total energy of 0.2 millihartrees), then the 
agreement of the left and right hand sides of (12) is better than two significant 
figures. For an eight-term expansion (corresponding to an energy error of 0.01 
millihartrees) the agreement is better than four significant figures. 

Next we consider the carbon groundstate HF AO's whose integral transforms were 
shown in Figs. la- lc .  Specifically we choose two sets of parameters with one set 
resulting from an SCF calculation using a "smal l"  basis of even-tempered Gaussian 
primitives and the second set resulting from an SCF calculation with a " large" 
basis of even-tempered primitives, the former being a (7s, 3p) basis, the latter a 
(23s, 1 lp) basis. In order to test the degree of validity of Eq. (11) we simply plot 
for the three atomic orbitals the values of the quantities (c~/ln fit) for the appropriate 
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abscissa values of gk = c~zfl~ on the curve for a al(~). The (7s, 3p) values are entered 
as diamonds, the (23s, 1 lp) values as circles. It is apparent that not only is the 
agreement perfect for the large basis, but it is also very good for the small basis. 
This agreement between the direct variational coefficients c~ and the exact transform 
functions shows that the variational representation in terms of even-tempered 
Gaussian primitives approaches the exact SCF solution in a systematic manner. 
The integral transform acts as if it were a "  slidewire" with the coefficients for finite 
expansions behaving like beads on the wire. The gridpoints of a particular expansion 
merely determine the positions of the beads on the wire and these positions can be 
altered without departing from the wire. We have noticed similar behavior for 
expansions of molecular orbitals. 

Another interesting aspect of the discussed results is that they establish a clear 
relation between the expansion of an atomic orbital in terms of Gaussian primitives 
and its expansion in terms of exponential-type primitives. Equation (11) shows how 
to obtain the coefficients of the even-tempered Gaussian expansion when the 
Gaussian and exponential exponents and the exponential coefficients are known. 
Thus, using this equation it was possible to predict the coefficients of a 9-term 
Gaussian expansion of the ls and 2s orbitals of carbon with sufficient accuracy that 
an energy only 0.009 Eh above the SCF coefficients was produced without actually 
performing the SCF calculation with Gaussians. However, it is also possible to 
invert the process. Since Gaussian expansions are always substantially longer than 
exponential-type expansions of equal quality, it is apparent that the number of 
coefficients cJ~ for which Eq. (11) applies is larger than the number of terms in the 
summation over v. If it is more than twice as large, then there are sufficient equations 
available to determine the values of the parameters for the exponential expansion 
when the Gaussian parameters c~, az, fi~, are known. This can be accomplished by a 
(partly linear, partly nonlinear) least-squares calculation based on minimizing the 
quantity 

[c[ - f ~ (b~ ,  b~, . . .  ; ~:1, ~:2,...)]2 

with respect to the parameters b~ and ~:~. Here the f~ are the functions defined by 
the right hand side of Eq. (11) and the values of c~, c~,/~z are supplied by the 
Gaussian expansion. It is thus possible to deduce the complete even-tempered 
exponential-type expansion from sufficiently large even-tempered Gaussian expan- 
sions. This procedure works quite well, as the results shown in Table 2 for the 
carbon ls and 2s orbitals attest. 

The shape of the Gaussian transform is not only highly independent of the basis 
set size, it is also nearly independent of the atomic number. Of course, the 
shrinkage of the atomic orbitals with increasing nuclear charge results in a shift of 
the transform function to higher log ~ values for larger Z. However, by suitable 
shifting of the transforms of two different elements, they can be superimposed 
almost perfectly. This is also shown in Figs. la- lc ,  where the values of (c~/ln fiz) 
from a (22s, 1 lp) SCF calculation of fluorine, shifted into maximal alignment with 
the carbon transform, are indicated as solid black dots. The magnitude of the shift 
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Table 2. Carbon SCF orbital parameters for a (6s, 4p) even-tempered exponential 
basis. Comparison between the parameters obtained from a direct SCF calculation 
in the ETE basis with those obtained by fitting to orbitals from an SCF calculation 
in terms of a (19s, 9p) ETG basis a 

Parameters obtained by fitting to orbitals from SCF calculation in terms of ETG basis. 

a = 0.702, b = 1.666 

C(1) C(2) C(3) C(4) C(5) C(6) 
ls -0.003 0.010 -0.002 0.922 0.080 0.002 
2s - 1.250 - 0.060 0.524 0.118 - 0.004 0.007 

Parameters obtained from SCF calculation in terms of ETE basis. 

d = 0.705,/~ = 1.667 

C(1) C(2) C(3) C(4) C(5) C(6) 
Is -0.000 0.002 0.016 0.913 0.077 0.001 
2s -1.252 -0.062 0.545 0.092 -0.011 0.001 

a Both basis sets gave an energy of -37.68859 E> The parameters a and b were 
determined by nonlinear fitting, while d and b are the SCF optimized even-tempered 
exponential values of Raffenetti [7]. 

is approximately 0.4 for both s and p symmetries. To avoid confusion, only the 
fluorine data points near the maximum and min imum are plotted for the ls and 
2s, the agreement is no  less good for high and low ~ values. Most  surprising is the 
excellent agreement for the 2p AO in spite o f  the additional three electrons using 
that  radial orbital factor in fluorine. 

3. Regularities in the Optimal Atomic ETG Exponential Parameters 

How do the optimal atomic (~,/3) depend on the expansion length used in an atomic 
SCF calculation ? In order to answer this question, several basis sets ranging in size 
up to 16 s-type and 7 p-type Gaussian primitives for the first row elements and up 
to 9 p-type primitives for sulfur were optimized by varying (~,/3) until the lowest 
energy for the appropriate  groundstate was obtained. For  the s symmetry optimi- 
zations, four p-primitives were used for the 2p AO in C and O, while sixp-primitives 
were used in S and So. For  the p symmetry seven s-primitives were used for  the ls 
and 2s AO ' s  in C and O, while eight s-primitives were uscd in S and So. I t  was 
established that  the optimization o f  one symmetry is highly independent o f  the 
number  o f  primitives in the other symmetries so long as the other symmetry is not  
overly truncated. Table 3 gives the optimal values found. 

In Figs. 2a-2c  the in (In (/3)) for some of  the optimal parameters listed in Table 3 
is seen to bc linearly rclatcd to the In (N - 1) where N is the number  of  primitives 
o f  that  symmetry in the basis set. This linear dependence is suggested by the 
behavior  o f  the largest exponent, i.e. lira (~/3N) = m and the smallest exponent, 
i.e. lim ~/3 = 0, whence lim/3N-1 = GO and hence lim [(N - 1) In/3] = m, whereas 
lim/3 = 1 and hence lira (In/3) = 0. Thus In/3 must  tend to zero less strongly than 
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Table 3. Optimal ET parameters for ground state carbon, oxygen, sulfur and selenium 

Carbon Oxygen Sulfur Selenium 
Ns Alpha Beta Alpha Beta Alpha Beta Alpha Beta 

5 0.05813 5.0784 . . . . . .  
6 0.06304 4.3406 0.11979 4.2931 . . . .  
7 0.05701 3.7973 0.10763 3.7710 . . . .  
8 0.05090 3.5089 0.09469 3.4995 0.07515 3.8708 0.10891 4.1055 
9 0.05019 3.2937 0.09357 3.2790 0.07917 3.5992 - 

10 0.04989 3.1112 0.09311 3.0895 0.07982 3.3199 - 
11 0.04798 3.9032 0.08874 2.8978 0.06601 3.0920 - 
12 0.04495 3.7647 0.07982 2.7649 0.06442 2.9667 0.08420 3.1013 
13 . . . .  0.06330 2.8338 - 
14 0.04339 3.5790 0.08032 2.5709 0.06056 2.7079 - 
15 . . . .  0.05901 2.6143 - 
16 . . . .  0.05829 2.5385 0.06852 2.6510 

Carbon Oxygen Sulfur Selenium 
Np Alpha Beta Alpha Beta Alpha Beta Alpha Beta 

3 0.04550 4.4504 0.08159 4.5997 . . . .  
4 0.04168 3.7920 0.07205 3.8890 . . . .  
5 0.03806 3.3503 0.06523 3.4182 0.07202 3.9473 - 
6 0.03523 3.0382 0.05859 3.1034 0.06446 3.4728 0.12810 3.7250 
7 0.03229 2.8151 0.05477 2.8553 0.05263 3.1757 - 
8 . . . .  0.04859 2.9505 - 
9 . . . .  0.04488 2.7523 0.06941 2.9142 

12 . . . . . .  0.04422 2.5211 

Selenium 
Nd Alpha Beta 

2 0.68011 4.5820 
3 0.57640 3.7667 
4 0.44612 3.3172 

( N  - 1) t ends  to  infinity.  Th is  w o u l d  suggest  a f u n c t i o n  o f  the  f o r m  In/3 ~ ( N  - 1) e 

w i t h  - 1  < k < 0, whence  

In (ln (/3)) = k In ( N  - 1) + l. (13) 

F i g u r e  3 shows the  a p p r o x i m a t e l y  l inear  d e p e n d e n c e  o f  In (a) o n  In (/3). F o r  the  

la rger  bases  this is seen to  give a ve ry  close fit to  an  e q u a t i o n  o f  the  f o r m  

In (c 0 = m In (/3) + n. (14) 

T h e  va lues  fo r  the  cons t an t s  a p p e a r i n g  in  Eqs .  (13) a n d  (14), wh ich  are  ob t a ined  by  

leas t  squares  f i t t ing the  d a t a  fo r  H,  C,  O,  S a n d  Se, a re  l is ted in Tab l e  4. I t  w o u l d  

seem a difficult  task  to  a priori pred ic t  the  pa r ame te r s  o f  Eqs.  (13) and  (14) f r o m  

s imple  ana ly t ica l  reasoning .  T h e  s lopes o f l n  (In (/3)) as a f unc t i on  o f l n  ( N  - 1) can  
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be found by an r-weighted least-squares fitting of  accurate exponential basis set 
atomic calculations [8], but the intercept of this line and both the slope and intercept 
of  the In (c 0 vs. In (/3) line cannot be accurately determined in this manner. 

Energy losses encountered when optimal (~,/3) values are replaced with those values 
predicted from Eqs. (13) and (14) vary with basis sets and are listed in Table 5. By 
comparing the values in this table with the optimal ET exponential results of 
Raffenetti [7] for the same atoms, it can be seen that the ratio of the number of 
Gaussians to exponentials required to achieve the same total energy is approxi- 
mately 3: 1 for the first row, 2.4: 1 for the second row, and 2: 1 for the third row of 

Table 4. Constants in the straight line approximations for the ET parameters 

Atomic 
number 

s-symmetry p-symmetry 

k l m n k I m n 

1 - 0 .369 0.763 0 .467 - 3.983 

6 - 0 . 4 6 5  1.084 0 .704  - 3 . 8 1 0  - 0 . 3 6 2  0.689 0.708 - 4 . 1 6 3  

8 - 0.443 1.084 0 .769 --  3 .269 - 0 .362  0.685 0 .820  - 3 .760 

16 - 0 . 4 8 7  1.278 0.711 - 3 . 5 0 9  - 0 . 4 4 0  0 .929 1.505 - 4 . 6 4 0  

34 - 0 . 4 8 5  1.290 - - - 0 . 4 4 3  0.988 - - 
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Table 5. Optimal and "straight l ine" atomic energies 

241 

Carbon Oxygen 
Basis Optimal Str. tine Basis Optimal Str. line 

(7s, 3p) -37.630142 -37.628856 (5s, 3p) -74.343343 -74.330671 
(9s, 4p) -37.676799 -37.676754 (7s, 4p) --74.716530 -74.715517 

( l l s ,  5p) -37.685532 -37.685492 (9s, 5p) -74.791194 --74.791182 
(13s, 6p) -37.687815 -37.687811 ( l l s ,  6p) -74.804559 -74.804558 
(15s, 7p) -37.688380 -37.688380 (13s, 7p) -74.808117 -74.808117 
(17s, 8p) -37.688541 (15s, 8p) -74.808945 
(19s, 9p) -37.688592 (17s, 9p) -74.809266 
(2Is, 10p) -37.688610 (19s, 10p) --74.809350 
(23s, l l p )  -37.688614 -37.688614 (21s, l l p )  -74.809381 

Sulfur Selenium 
Basis Optimal Str. line Basis Optimal Str. line 

(10s, 6p) -397.26057 -397.25823 
(12s, 7p) --397.43035 -397.43023 
(14s, 8p) - 397.47966 - 397.47966 
(16s, 9p) -- 397.49538 
(18s, 10p) - 397.50121 
(20s, 1 lp)  - 397.50352 
(22s, 12p) - 397.50431 
(24s, 13p) - 397.50462 

(8s, 6p, ld) -2385.3307 
(12s, 9p, 2d) -2398.1209 
(16s, 12p, 4d) -2399.5044 

0.32 
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the periodic table, reflecting the fact that the built-in advantage of the latter in 
describing the cusp is becoming less important to the total energy. 

Rapid convergence of the two columns results from the decreasing deviation of the 
optimal (c~,/3) points from the linearly interpolated values and from the simultaneous 
increase in the flatness of the energy surface as a function of the ET parameters. 
Additional optimization of the (23s, 1 lp) basis for carbon confirmed the validity 
of the "straight line" values of ~ and/3~ at large N values. 

Not  only is the set of optimal ET parameters a smooth function of the number of 
Gaussians used for the expansion, it also behaves smoothly in going across the 
periodic table. In Fig. 4 the double logarithm of the optimal beta values for a 
(7s, 4p) ETG basis, as determined by Raffenetti [9], are plotted against the logarithm 
of the atomic numbers. Discontinuities in the slope are visible for both curves. For 
the s curve it occurs in going from Be to B. For the p curve it occurs between N 
and O. 

4. Regularity of the Total Energy for Atoms 

As the approximate SCF orbitals approach the integral transform representation 
of  the exact atomic orbitals by means of the systematic sequence of (c~,/3) points 
given by Eqs. (13) and (14), the total energy approaches the HF limit in a very 
regular fashion. This can be seen in Figs. 5a and 5b where the beryllium energies 
of Schmidt and Ruedenberg [10] are used. Here the logarithm of the difference 
between each energy value and the near HF value of the (28s) basis is plotted as 
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a function of 1/N and 1/ln (N!) where N is half the number of s-primitives in the 
basis. 

Because two different linear dependencies seem to dominate at opposite ends of the 
basis size spectrum a simple analytic expression combining the two such as 

Log (EN -- Eoo) = AN/(1 + exp [-a(N-  2)1) + BIn (N!)/(1 + exp [a(N- 2)1) 

(15) 

is capable of fitting the entire curve quite well. The constants A and B are deter- 
mined linearly while Er and a are determined nonlinearly by minimizing the 
standard deviation of the fit. The constant 2 appearing in (15) may also be varied, 
however, E~o is quite insensitive to its value. The nine Be points were fitted with a 
maximum deviation of 0.0002 and a typical deviation of 10 -s for the larger basis 
set points with Eoo = - 14.573023, A = -0.551292, B = -0.664424 and alpha = 
0.25. Although this technique provides an extrapolation to the HF limit from a 
limited segment of the converging curve, its usefulness is limited to an improvement 
no better than one order of magnitude beyond the last computed value employed 
in the fit. For atoms, this degree of improvement is not too difficult to obtain by 
merely performing the indicated calculations with a larger basis set. The novelty of 
Eq. (15) lies in being able to accurately fit energies from such a wide range of basis 
sets with a two-term expansion, and with the help of such a fit, to predict with 
confidence, lower bounds as well as upper bounds for the exact limiting values. This 
will be elaborated on in a forthcoming paper by Schmidt and Ruedenberg [10]. 

Our basis sets are sufficiently large and the energy values sufficiently regular that 
with the use of Eq. (15) we can accurately estimate the HF limit for three of the 
atoms investigated. In applying Eq. (15) we identify N with N(p), and note that 
N(s) = 2N(p) + 1 in carbon and oxygen while N(s) = 2N(p) - 2 in sulfur. The 
limits are: carbon - 37.688617 En, oxygen - 74.809397 Eh, and sulfur - 397.50488 
E~. The uncertainty in these values is _+ 2 in the last digit. These values for the HF 
limit are in disagreement with the 1968 numerical Hartree-Fock energies of Fischer 
[11] by 0.00019, 0.00024, and 0.00122 for C, O, and S respectively, all lying above 
the Fischer values. Subsequent numerical calculations [12] are much closer to our 
estimates of the lower bound. 

5. Optimal ET Molecular Parameters from Uncontracted Calculations 

Since the reason for choosing a Gaussian primitive basis as opposed to a set of 
exponential primitives is the speed advantage the former gives in molecular multi- 
center integral evaluation, a pertinent aspect of the ET choice is that optimal ET 
molecular exponents are derivable from the atomic (~,/3) with relative ease. 
Uncontracted optimizations of the ET (~,/~) pairs in the carbon monoxide, methane 
and acetylene molecules with Gaussian basis sets of(6s, 3p) up to (14s, 7p) demon- 
strated that the energy differences between the optimal atomic and molecular (~,/3) 
values for large sets were generally less than a millihartree in size. Moreover the 
optimal (~,/3) values for the s-type primitives were very nearly identical for the 
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a t o m  and  the molecule  after  1 ls.  To a large extent  this is so because the major i ty  
o f  pr imit ives for  this symmetry  are  needed to refine the cusp. As  these large 
exponent  funct ions become an increasing percentage of  the basis set, the (~, fl) 
values which are  op t imal  for  the a tomic  cusp tend  to dominate .  This domina t ion  
is a ided  by  the near  sa tura t ion  o f  the valence region with sufficient funct ions such 
tha t  exponent  values can deviate considerably  f rom the op t imal  values wi thout  
substant ia l  effect on the to ta l  energy. Op t ima l  (c~,/3) pairs  for  p - symmet ry  in 
molecules are no t  observed to  converge to the op t imal  a tomic  values as rap id ly  as 
the  s-symmetry ,  bu t  they too  lie within a small  region o f  the a tomic  values. 

Accura te  basis sets a t  the atomic l imit  are only a minimal  requi rement  for  accuracy 
in molecules. Uncon t rac ted  calculat ions on CO with op t imal  a tomic  even- tempered 
exponents  show tha t  there exists an " a d d i t i o n a l  molecular  e r r o r "  beyond  tha t  
which would  be expected f rom the sum of  the a tomic  errors  seen in Table  5. This  
is i l lustrated in Table  6. Here  the " a d d i t i o n a l  molecular  e r r o r "  is defined as the 
difference between the error  due to  basis set t runca t ion  within each orbi ta l  symmetry  
for  the molecule and  the error  due to basis set t runca t ion  within each orbi ta l  
symmetry  for  the two atoms. I t  is seen that  the error  general ly decreases with 
increasing basis set size. The magni tude  o f  the molecular  error  also depends  on the 
par t icu la r  elements involved and  the internuclear  separat ions.  The H F  l imit  for  CO 
comes f rom a har t ree  ex t rapola t ion  o f  the to ta l  energies result ing f rom the largest  

three bases. 

Table 6. Molecular errors for carbon monoxide 

Total Addit. 
molecular molecular 

Energy error error 
Basis (hartree) (millihartree) (millihartree) 

a) Optimal atomic even-tempered parameters 
4s, 2p - 110.49971 2217.0 17.8 
6s, 3p - 112.36763 349.1 5.1 
8s, 4,o - 112.64166 75.0 3.5 

10s, 5p - 112.69584 20.9 3.8 
12s, 6p - 112.71028 6.4 1.8 
14s, 7p - 112.71478 1.9 0.8 
16s, 8p - 112.71579 1.0 0.5 
sp-HF limit -- 112.7167 0.00 0.00 

b) Optimal molecular even-tempered parameters 
4s, 2p -- 111.02170 1695.0 
6s, 3p - 112.39190 324.8 
8s, 4p - 112.64635 70.4 

10s, 5p -- 112.69801 18.7 
12s, 6p - 112.71176 4.9 
14s, 7p - 112.71556 1.1 
16s, 8p - 112.71600 0.7 
sp-HF limit - 112.7167 0.00 

527.7 
--24.7 
--4.9 
--2.5 
--1.5 
--0.8 
--0.3 

0.00 
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Even with the simplifications inherent in the even-tempered approach, molecular 
optimization is still very time consuming. Moreover, while the set of  optimal atomic 
parameters can be easily and accurately predicted for any size basis, we did not find 
this to be the case for the molecular set of small to medium size bases. Because of  
the similarity between atomic and molecular (~,/3) pairs it is therefore reasonable 
to use the atomic even-tempered parameters in molecular calculations, and this 
choice is adopted in the further investigation. 

6. Effective Contracted Orbitals for s and p Symmetries 

Having determined the size of the primitive basis set and having adopted the atomic 
a, fl parameters, we finally must choose a suitable set of  contracted orbitals. To this 
end, we used a technique developed by Ruedenberg et al. [13] to derive from an 
uncontracted molecular calculation that set of contracted orbitals which optimally 
reproduces the uncontracted result. We then investigated the overlap of the space 
spanned by these optimal contracted orbitals with the space spanned by the occupied 
and virtual atomic SCF AO's. Our investigation involved ET basis sets ranging in 
size from (6s, 3p) to (14s, 7p) on the molecules CO, CH4, C2H2, and H2CO. In all 
cases studied the space of the ls, 2s, 2p plus the first several virtual SCF AO's  
overlapped the space of the most important optimal contracted orbitals to better 
than 0.995 as shown in Table 7. It  follows then that the space spanned by the 
occupied atomic SCF orbitals and the low-energy virtual atomic SCF orbitals 
furnish a near optimal set of  contracted orbitals for molecular calculations. 

The function space spanned by these contracted orbitals can be generated in a 
simpler manner however. Specifically, the low-energy virtual SCF AO's can be 
replaced by the most diffuse primitive AO's. The reason is as follows. Since the 

Table 7. Transformation matrix between the HF atomic SCF AO'S (occupied plus first virtual) 
and the optimal contracted orbitals of CO 

6s Basis 14s Basis 

Opt. Atomic SCF Opt. Atomic SCF 
contr, ls 2s 3s contr, ls 2s 3s 
1 0.974 0.228 0.008 1 0.476 0.878 0.006 
2 - 0.229 0.974 0.011 2 0.879 - 0.476 0.010 
3 0.005 0.012 -0.991 3 0.009 0.043 -0.992 

6p Basis 

Opt. Atomic SCF 
contr. 2p 3p 4p 
1 0.979 0.178 0.105 
2 -0.196 0.631 0.750 
3 0.015 -0.722 0.612 
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Table 8. Energy losses with respect to an uncontracted (16s, 8,o) 
basis for a HF AO plus diffuse primitives set on CO Contracted Energy loss 

b a s i s  (millihartrees) 

(6s, 5p) 0.4 
(5s, 4p) 2.4 
(4s, 3p) 5.8 
(3s, 2p) 32.0 
(2s, lp) 149.0 

virtual orbitals tend to span the continuum of the atomic HF eigenvalue problem, 
the energies o f  these orbitals increase monotonically with their kinetic energy, the 
lowest-energy virtual orbitals having the lowest kinetic energies. On the other hand, 
since the most diffuse primitives have the smallest kinetic and potential energies of 
all primitives, it turns out that the lowest-energy virtual SCF AO's essentially consist 
of the most diffuse primitives orthogonalized to the occupied SCF AO's. This ortho- 
gonalization is unnecessary, however, if the object is merely to span the same space. 
In fact, Raffenetti [14] was the first to compare the energies obtained with a set 
of  HF AO's plus a diffuse primitive to Dunning's [15] contracted orbitals on 
the nitrogen molecule and water. He found them to be slightly better than 
Dunning's. 

Because of the ease of generating this set and because of their similarity to the HF 
AO virtual space we shall employ this type of basis in the rest of this paper. Table 
8 lists the energy losses incurred with such contractions for a (16s, 8p) primitive 
basis on CO. The quality of this contraction scheme depends slightly on the 
internuclear distances involved since the exact separated atoms' coefficients are 
built in. 

We shall refer to basis sets generated in this manner as Raffenetti-type or SCFD 
bases. Specifically for an atom from Li to Ne, the symbol ETG16,8/4,3SCFD basis 
would denote a basis constructed from an atom-optimized even-tempered (16s, 8p) 
set of Gaussian primitives by contraction to a (4s, 3p) set, obtained by choosing the 
ls, 2s, 2p atomic SCF AO's and the two most diffuse s-primitives and the two most 
diffuse p-primitives. It should be noted that such a contraction scheme is not of 
the segmented type. The calculation of molecular integrals between such basis 
orbitals from integrals between primitive functions requires therefore a procedure 
such as BIGGMOLI [14] in order to avoid computational inefficiencies due to 
duplication. 

7. A Minimal Basis Set Function for Hydrogen 

The hydrogen atom basis deserves special attention not only because of its ubiqui- 
tous appearance throughout chemistry but, more importantly, because of the 
substantial energetic effect which results from scaling its minimal basis function. 
Even though several contraction schemes now in use provide results within a 
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fraction of a millihartree when two or more basis functions are used, it is never- 
theless of interest to know which contracted function is most effective when used 
as a single minimal basis AO. 

A common practice is to take its coefficients from the atomic ls orbital and then 
determine the optimal scaling factor from the hydrogen molecule. A somewhat 
better single function is obtained by preserving the primitive even-tempered 
exponents from the isolated atom and taking as contraction coefficients those which 
yield the H2 molecular orbital resulting from an uncontracted SCF calculation. 
Also when used in other molecules, this minimal basis function yields a lower 
energy error per H atom than the scaled ls AO. This is illustrated in Table 9 which 
lists the errors for calculations on methane, H2 and acetylene made with various 
hydrogen minimal basis set orbitals contracted from six s-primitives, with respect 
to calculations made with the uncontracted hydrogen 6s basis, In addition to the 
two contracted orbitals just mentioned the table also lists some results using minimal 
basis sets that yield optimal results in C2H2 and CH4. The carbon basis in these 
calculations is a (6s, 3p) basis. The degree of contraction of the carbon basis 
influences the errors in Table 9 to less than 0.1 millihartrees. 

Since acetylene and methane are usually found at opposite ends of the scaling range, 
the errors in other hydrocarbons are presumably no larger. For use as a single basis 

Table 9. Errors per H atom in various molecules for 
hydrogen minimal-basis-set-calculations with respect to 
uncontracted hydrogen 6s-primitive-basis calculations ~ 

a All errors are given in millihartrees. 

Scale 
Factor H2 C2H2 CH4 

1. Coefficients of H minimal basis AO 
from atomic ls AO 

1.00 18.7 24.9 20.9 
1.19 0.1 4.5 3.6 
1.29 4.9 2.6 1.8 
1.35 13.0 1.7 2.4 

2. Coefficients of H minimal basis AO 
from uncontracted H2 SCF MO 

1.00 0.0 4.1 3.1 
1.08 5.0 1.3 1.1 
1.10 7.0 1.0 1.1 
1.13 11.9 0.9 1.2 
1.15 17.2 1.2 1.5 

3. Coefficients of H minimal basis AO 
from uncontracted SCF calcula- 
tions on C2H2 

1.00 0.5 1.9 

4. Coefficients of H minimal basis AO 
from uncontracted SCF calcula- 
tions on CH4 

1.00 2.2 0.4 
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Table 10. Atomic and molecular hydrogen errors with the 
optimal H2 contracted orbital and diffuse primitives for a 
6s basis a 

Scale 
factor Contracted basis Atomic Molecular 

1.00 one s orbital 18.6 0.4 
1.00 two s orbitals 1.9 0.4 
1.00 three s orbitals 0.2 0.4 
1 .00  uncontracted basis 0.2 0.4 
1.10 one s orbital 48.5 14.4 
1.10 two s orbitals 2.7 1.7 
1.10 three s orbitals 0.3 0.5 
1 .10  uncontracted basis 0.3 0.5 

a All errors are in millihartrees. 

function the minimal basis No. 2 with a scaling factor of 1.08 would seem to 
represent an optimal compromise. 

In cases where a hydrogen atom will dissociate from the molecule or where addi- 
tional accuracy is required, some diffuse primitives must be added to increase the 
flexibility of the basis. The quality of various basis sets of this type is illustrated in 
Table 10. The coefficients of the minimal basis orbital are those from Case 2 of 
Table 9, (i.e. from an uncontracted H2 calculation with scale factor unity). The 
second and third orbitals, where present, are the one or two most diffuse single 
Gaussian primitives. The error listed is with respect to the exact value in the atom 
and with respect to the s-limit of the SCF approximation in the H2 molecule. 

It is apparent that, when at least two s orbitals are used, the choice of a scale factor 
of unity will give equally satisfactory results, within a millihartree, for the free H 
atom as well as for the H orbital in a molecule. From the data given in Table 9 for 
Case 2, it can be inferred that this choice will also give millihartree accuracy for 
hydrogen in other molecules. 

8. Polarization Functions 

In order to construct symmetry orbitals for use in molecular calculations, admix- 
tures of all primitive functions (or combinations of primitives transforming 
according to the irreducible representations of the molecule's point group) should 
be included in the algorithm. While for atoms in the first and second rows this 
restricts the primitives to be of s or p symmetry, functions of higher angular 
momentum may mix in for molecules. Such functions allow the MO's to polarize 
in the direction of the bond and were initially suggested by Nesbet [16]. Polarization 
functions are known to provide a substantial energy lowering and improvement of 
expectation values when compared with similar calculations without such functions. 
In the CO molecule, approximately three or four sets of even-tempered d primitives 
are required in order to attain millihartree deviations from the s, p, d basis set limit. 
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Table 11. Optimal ET d-symmetry parameters and energies for CO 
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Carbon Oxygen 
Basis ~ Alpha Beta Alpha Beta Energy 

(10s, 5p/5s, 3p) . . . . .  112.6958 
(10s, 5p, ld/5s, 3p, ld) 1 . 0 0 0 0 0  1 . 0 9 6 6 0  1.00000 1 . 0 3 8 9 0  -112.7619 
(10s, 5p, 2d/5s, 3p, 2d) 0.06588 3.89619 0.03088 5 . 8 7 0 8 5  -112.7680 
(10s, 5p, 3d/5s, 3p, 3d) 0.06856 3 . 8 1 9 0 4  0.04689 4.22070 -112.7704 
(10s, 5p, 4d/5s, 3p, 4d) 0.06050 3.62110 0.02814 4.11723 -112.7712 

a Contracted orbitals are the optimal contracted orbitals for lOs, 5p. 

Table 11 shows the energy lowering with the inclusion of  d functions optimized for 
the CO molecule. The l d  and 2d exponents were optimized with a (6s, 3p) and 
(8s, 4p) respectively, instead of  with the (10s, 5p) basis. Al though a satisfactory 
description of  some properties may be obtained without  such functions, others, like 
the internal rotat ion in hydrogen peroxide, require that  they be present in the basis 
set. A recent study by Poirier and Kari  [17] indicates that  for the computed one- 
electron properties of  first- and second-row hydrides there is no economic justifica- 
t ion for  including f - symmetry  polarization functions. For  CO they lower the total 
energy by at most  6 millihartrees, since the actual restricted H F  limit for CO lies 
within a couple millihartrees o f  - 112.7892 Eh, obtained with a very large s, p, d , f  
Slater-type orbital (STO) basis [18]. 

We shall use the notat ion ETG16,8/4,3SCFD + 2,1 to indicate the addition o f  two 
d primitives and onefpr imi t ive  as polarization functions to the basis defined at the 
end of  Sect. 7. 

9. Regularity of the Total Energy and Dipole Moment for CO 

In  the case of  the free a tom a systematic approach to the complete basis provided 
sufficient regularity in the total energies that  extrapolation to the integral t ransform 
limit became feasible. Similar behavior is found in the carbon monoxide molecule. 

Table 12. Hartree extrapolations of CO 
total energies Basis Energy E (limit) 

(6s, 3p) -- 112.3919 - 
(8s, 4p) -- 112.6464 - 
(10s, 5p) --112.6980 --112.711 
(12s, 6p) --112.7118 --112.717 
(14s, 7p) --112.7156 --112.717 
(16s, 8p) --112.7160 --112.716 
(6s, 3p, ld) - 112.4919 - 
(8s, 4p, 2d) - 112.7231 - 
(10s, 5p, 3d) -112.7704 -112.783 
(12s, 6p, 4d) - 112.7815 - 112.785 
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Table 13. Dipole moments from various ET basis sets on CO a 

Basis A Basis B Basis C Basis D 

(6s, 3p) -112.362 -112.426 (6s, 3p, ld) -112.491 - 
0.641 0.581 0.088 - 

(8s, 4p) -112.640 -112.649 (8s, 4p, 2d) -112.723 - 
0.552 0.567 0.336 - 

(10s, 5p) -112.696 -112.701 (10s, 5p, ld) -112.770 - 
0.506 0.543 0.212 0.258 

(12s, 6p) - 112.7092 - - - 
0.479 - - - 

a Every entry contains the total energy (in hartrees) in the first row and the dipole moment (in 
debyes) in the second row. Basis set B contains the functions in Basis A plus some additional 
diffuse primitives. Basis D consists of the functions in Basis C plus some additional diffuse 
primitives. 

However, the increase in basis set size in going from an a tom to a molecule precludes 
the use of as large a set as was used in the atoms. Table 12 lists the results of  Hartree 

extrapolations on the total  energies obtained with s, p, and  s, p, d basis sets. 

Ano the r  impor tan t  molecular property is the dipole moment .  Since this property 

is rather sensitive to the basis set's ability to properly span a region of space other 
than  near  the nucleus it is of  interest to see whether the use of an energy optimized 

ET basis allows an extrapolat ion of the values obtained with smaller bases. In  Table 

13 the values of the dipole moment  from polarized and nonpolar ized ET bases are 
reported. In  some cases addit ional  diffuse primitives with an s exponent  of 0.06 and  

a p exponent  of 0.03 were added to the basis to help in describing the region of  

space far f rom the nucleus. 

The H F  limit value is close to 0.276 D and  the experimental value obtained by 
microwave spectroscopy is - 0.112 D. The fact that  the H F  value has incorrect sign 

is no t  of concern to us for this work. What  seems evident from these results is that  

the value of this property is too highly dependent  on diffuse primitives in the basis 

to allow extrapolation. Even though basis sets A and  B or C and  D must  converge 
to the same limit they are still far enough apart  in their values that a simple 

extrapolat ion would seem difficult. 
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